Exact Exploration and Hanging Algorithms
نویسندگان
چکیده
Recent analysis of sequential algorithms resulted in their axiomatization and in a representation theorem stating that, for any sequential algorithm, there is an abstract state machine (ASM) with the same states, initial states and state transitions. That analysis, however, abstracted from details of intra-step computation, and the ASM, produced in the proof of the representation theorem, may and often does explore parts of the state unexplored by the algorithm. We refine the analysis, the axiomatization and the representation theorem. Emulating a step of the given algorithm, the ASM, produced in the proof of the new representation theorem, explores exactly the part of the state explored by the algorithm. That frugality pays off when state exploration is costly. The algorithm may be a high-level specification, and a simple function call on the abstraction level of the algorithm may hide expensive interaction with the environment. Furthermore, the original analysis presumed that state functions are total. Now we allow state functions, including equality, to be partial so that a function call may cause the algorithm as well as the ASM to hang. Since the emulating ASM does not make any superfluous function calls, it hangs only if the algorithm does. [T]he monotony of equality can only lead us to boredom.
منابع مشابه
An Improved Bat Algorithm with Grey Wolf Optimizer for Solving Continuous Optimization Problems
Metaheuristic algorithms are used to solve NP-hard optimization problems. These algorithms have two main components, i.e. exploration and exploitation, and try to strike a balance between exploration and exploitation to achieve the best possible near-optimal solution. The bat algorithm is one of the metaheuristic algorithms with poor exploration and exploitation. In this paper, exploration and ...
متن کاملApplication of Probabilistic Clustering Algorithms to Determine Mineralization Areas in Regional-Scale Exploration Studies
In this work, we aim to identify the mineralization areas for the next exploration phases. Thus, the probabilistic clustering algorithms due to the use of appropriate measures, the possibility of working with datasets with missing values, and the lack of trapping in local optimal are used to determine the multi-element geochemical anomalies. Four probabilistic clustering algorithms, namely PHC,...
متن کاملHeuristic and exact algorithms for Generalized Bin Covering Problem
In this paper, we study the Generalized Bin Covering problem. For this problem an exact algorithm is introduced which can nd optimal solution for small scale instances. To nd a solution near optimal for large scale instances, a heuristic algorithm has been proposed. By computational experiments, the eciency of the heuristic algorithm is assessed.
متن کاملMulti-objective Grasshopper Optimization Algorithm based Reconfiguration of Distribution Networks
Network reconfiguration is a nonlinear optimization procedure which calculates a radial structure to optimize the power losses and improve the network reliability index while meeting practical constraints. In this paper, a multi-objective framework is proposed for optimal network reconfiguration with the objective functions of minimization of power losses and improvement of reliability index. T...
متن کاملExact and approximate solutions of fuzzy LR linear systems: New algorithms using a least squares model and the ABS approach
We present a methodology for characterization and an approach for computing the solutions of fuzzy linear systems with LR fuzzy variables. As solutions, notions of exact and approximate solutions are considered. We transform the fuzzy linear system into a corresponding linear crisp system and a constrained least squares problem. If the corresponding crisp system is incompatible, then the fuzzy ...
متن کامل